Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430U30-1

MONDAY, 19 JUNE 2023 – AFTERNOON

SCIENCE (Double Award) Unit 3 – PHYSICS 1

FOUNDATION TIER

1 hour 15 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	6				
2.	13				
3.	6				
4.	10				
5.	10				
6.	9				
7.	6				
Total	60				

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question **5(a)**.

Equations	
current = $\frac{\text{voltage}}{\text{resistance}}$	$I = \frac{V}{R}$
total resistance in a series circuit	$R = R_1 + R_2$
energy transferred = power × time	E = Pt
power = voltage × current	P = VI
% efficiency = $\frac{\text{energy [or power] usefully transferred}}{\text{total energy [or power] supplied}} \times 100$	
density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$
units used (kWh) = power (kW) × time (h) cost = units used × cost per unit	
wave speed = wavelength × frequency	$v = \lambda f$
speed = $\frac{\text{distance}}{\text{time}}$	

SI multipliers

Prefix	Symbol	Conversion factor	Multiplier
milli	m	divide by 1000	1 × 10 ⁻³
centi	с	divide by 100	1 × 10 ⁻²
kilo	k	multiply by 1000	1 × 10 ³
mega	М	multiply by 1000000	1 × 10 ⁶

3430U301 03

The c	iagra	m shows the 7	7 regions of tl	ne electromagr	netic (em) spe	ectrum in orde	r.
gamr ray	na S	Α	В	visible light	infra-red	microwaves	radio waves
(a)	Use	only the word	ls given in the	e box below to	answer the fo	llowing quest	ions.
cosr	nic ray	ys X-	-rays	ultrasound	wat	er	ultraviolet
	(i)	Name the re	gion labelle d	J A			[1]
	(ii)	Name the re	gion labelle d	1 B			[1]
(b)	(i)	Complete the	e following se	entence by <u>und</u>	<u>erlining</u> the c	orrect word in	the bracket. [1]
		The arrow sl	hown on the	electromagneti	c spectrum a	bove represei	nts
		increasing (a	amplitude / v	vavelength / fr	equency).		

6

(ii) Waves in the electromagnetic spectrum all travel at the same speed in a vacuum.
Tick (✓) the three correct statements that describe other properties of em waves.
[3]
All transverse.

All ionising.

All transfer energy.

All longitudinal.

All travel through space.

All given out by radioactive materials.

Examiner only

> 3430U301 05

The circuit diagram below shows a design for a hairdryer that can blow either cold air or hot

The switches in the diagram are in the open position. a.c. mains supply fuse fan fan switch 1 M heater (a) Complete the following sentences by <u>underlining</u> the correct phrase in the brackets. [2] When switch 1 is closed and switch 2 is open the hairdryer blows cold air because

(only the fan is on / only the heater is on / the heater and fan are both on).

The hairdryer blows hot air when the heater and fan are both on. This happens when (both switches are open / only switch 2 is closed / both switches are closed).

(b) The hairdryer is used to blow hot air.

The current supplied is **6A** and the mains voltage is 230 V.

(i) Use the equation:

power = voltage \times current

to calculate the power of the hairdryer.

[2]

power = W

2.

air.

06

08

Use	information from the	e diagrams to answ	er the following questions		
(i)	State the mass of	the iron.	mass =	g	[1]
(ii)	State the volume of	of the iron.	volume =	cm ³	[1]
(iii)	I. Use the equ	ation:			
		density = <u>mas</u> volur	ne		
	to calculate	the density of iron.			[2]
			density =		
	II. <u>Underline</u> th	ne correct unit that	should be used for the de	nsity above.	[1]
	g/cm ³	g/cm ²	cm²/g	cm³/g	
iv)	State one change measurement of th	to the apparatus th ne mass of the iron	at would improve the acc	uracy of the	[1]

					Examiner
	(b)	Com	plete the following sentences by <u>underlining</u> the correct phrase or word.	[3]	oniy
		As th resis decr	ne (temperature / power / voltage) of the thermistor is increased to 50 °C its tance decreases. The total resistance in the circuit (increases / stays the sam reases) and the circuit current (increases / stays the same / decreases).	ie /	
	(c)	(i)	State how the original circuit could be changed to become a light sensing circu	uit. [1]	
		(ii)	Give a reason for your answer.	[1]	
					10
	12				
	14		© WJEC CBAC Ltd. (3430U30-1)		

Examiner only

5. A pupil sets up an experiment to investigate the absorption of heat radiation.

The diagram shows the apparatus set up **before** the heater was turned on for 8 minutes.

Two identical aluminium cans were both filled with $200 \,\mathrm{cm}^3$ of water and a digital thermometer was inserted through a small hole in the lid.

14	
	Examiner only
	-
14 (3430U30.1)	

6. The UK government wants to reduce the CO_2 emissions from power stations.

The graphs below show the $\rm CO_2$ emissions from coal and natural gas power stations between the years 2007 and 2017.

16

(a)	Look and	at the data for 2012 . Calculate the difference in the emissions of CO_2 from coal natural gas.	[2]
		difference = kilotonnes of 0	CO ₂
(b)	Betw 5500	reen the years 2014 and 2015, the emission of CO ₂ from coal fell by kilotonnes.	
	State	between which other years the emission of CO ₂ from coal fell at the same rate	ə .[1]
	Year	s and	
(C)	State	e two benefits of reducing CO ₂ in the atmosphere.	[2]
	1.		
	2.		
(d)	(i)	Nuclear power stations provide up to 20% of the present UK demand for electricity.	
		Gas provides up to 50%.	
		One student, Seren, says that a graph for the CO_2 emissions from nuclear pow stations would be the same shape as for gas but always lower.	ver
		Explain whether you agree with Seren.	[2]
	•••••		
			•••••
	•••••		
	·····		

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only

7. Students study refraction of waves in a ripple tank.

They set up the tank to show waves going from shallow water into deeper water.

The diagram shows a number of wavefronts approaching a boundary between shallow and deep water.

The first four wavefronts have reached the boundary.

(a) **Complete the diagram** to show the wavefronts in the deep water.

[3]

21

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

